Lesson 24. Double Integrals in Polar Coordinates

1 Review

1.1 Polar coordinates

• **Polar coordinate system**: specify points in the *xy*-plane as (r, θ) where

Example 1. Sketch the region in the plane consisting of points whose polar coordinates satsify: $1 \le r \le 3$, $\pi/6 \le \theta \le 5\pi/6$.

1.2 Polar curves

• The graph of a polar equation $F(r, \theta) = 0$ consists of all points that can be represented by some polar coordinates (r, θ) that satisfy the equation

Example 2. Sketch the curve with polar equation $r = 2\cos\theta$.

1.3 Correspondence between polar and Cartesian coordinates

Example 4. Find a polar equation for the curve represented by the Cartesian equation $4y^2 = x^2$.

2 Changing to polar coordinates in a double integral

- Idea:
 - Some regions are hard to express in terms of rectangular coordinates, but easily described using polar coordinates

• How do we integrate in polar coordinates? Divide regions into polar subrectangles

• If *D* is a polar region of the form

$$D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_1(\theta) \leq r \leq h_2(\theta)\}$$

then

- Substitute $x = r \cos \theta$ and $y = r \sin \theta$ into f(x, y)
- Replace dA with $r dr d\theta$
- Don't forget the additional factor *r*!

Example 5. Evaluate $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sin(x^2 + y^2) dy dx$ by converting to polar coordinates.

Example 6. Evaluate $\iint_D (x^2 + y^2) dA$, where *D* is the region in the first quadrant bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ and the lines x = 0 and y = x.

Example 7. Find the volume of the solid bounded by the plane z = 0 and the paraboloid $z = 1 - x^2 - y^2$.